Thermoporoelasticity via homogenization: Modeling and formal two-scale expansions
نویسندگان
چکیده
منابع مشابه
High Order Correctors and Two-scale Expansions in Stochastic Homogenization
In this paper, we study high order correctors in stochastic homogenization. We consider elliptic equations in divergence form on Zd, with the random coefficients constructed from i.i.d. random variables. We prove moment bounds on the high order correctors and their gradients under dimensional constraints. It implies the existence of stationary correctors and stationary gradients in high dimensi...
متن کاملHomogenization and Two - Scale Convergence *
Following an idea of G. Nguetseng, the author defines a notion of "two-scale" convergence, which is aimed at a better description of sequences of oscillating functions. Bounded sequences in L2(f) are proven to be relatively compact with respect to this new type of convergence. A corrector-type theorem (i.e., which permits, in some cases, replacing a sequence by its "two-scale" limit, up to a st...
متن کاملA comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures
In this paper we make a comparison between the two-scale asymptotic expansion method for periodic homogenization and the so-called Bloch wave method. It is wellknown that the homogenized tensor coincides with the Hessian matrix of the first Bloch eigenvalue when the Bloch parameter vanishes. In the context of the two-scale asymptotic expansion method, there is the notion of high order homogeniz...
متن کاملTwo-scale homogenization of piezoelectric perforated structures
We are interested in the homogenization of elastic-electric coupling equation, with rapidly oscillating coefficients, in periodically perforated piezoelectric body. We justify the two first terms in the usual asymptotic development of the problem solution. For the main convergence results of this paper, we use the notion of two-scale convergence. A two-scale homogenized system is obtained as th...
متن کاملSparse Two-Scale FEM for Homogenization Problems
We analyze two-scale Finite Element Methods for the numerical solution of elliptic homogenization problems with coefficients oscillating at a small length scale ε 1. Based on a refined two-scale regularity on the solutions, two-scale tensor product FE spaces are introduced and error estimates which are robust (i.e. independent of ε) are given. We show that under additional two-scale regularity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering Science
سال: 2019
ISSN: 0020-7225
DOI: 10.1016/j.ijengsci.2019.02.005